湯楠博士
- 基本信息
- 教育經歷
- 工作經歷
- 研究概述
- 發表文章

湯楠 博士
北京生命科學研究所高級研究員
Nan Tang, Ph.D. Associate Investigator, NIBS, Beijing,China
Phone:86-10-80726688
Fax: 86-10-80726689
E-mail:tangnan AT nibs DOT ac DOT cn
教育經歷
Education
2005年 美國加州大學圣地亞哥分校,博士
Ph. D.,
1993年 西安交通大學,醫學學士
M.D.,
工作經歷
Professional Experience
2019年- 北京生命科學研究所高級研究員
2012-2019 北京生命科學研究所研究員
Assistant Investigator, National Institute of Biological Sciences,
2006-2012 美國加州大學舊金山分校解剖發育生物學系,博士后
Postdoctoral Fellow, Dept. of Anatomy and Program in Developmental Biology, University of California, San Francisco, CA, USA
2000-2005 美國加州大學圣地亞哥分校分子病理學系,博士研究生
Graduate Research Assistant in Molecular Pathology,
1998-2000 美國加州大學圣地亞哥分校細胞及發育生物學系,博士后研究員
Postdoctoral Researcher, Cell and Developmental Biology, Division of Biological Sciences,
研究概述
肺,是陸生動物與外界進行氣體交換的場所,其對于生命的重要性可窺一斑,而其氣體交換功能由肺泡介導完成。成人肺的3-5億個肺泡,每小時完成450升氣體交換,詮釋了肺臟最基本的結構與功能,也為重癥、難治性肺臟疾病的發生、進展埋下了伏筆。特發性肺纖維化、慢性阻塞性肺病、肺癌等無一不是嚴重威脅人類健康且幾乎無藥可治的重大臨床問題。
于是兩個基礎性問題引起了我們強烈的研究興趣:1)我們精妙的肺臟受損傷后是如何修復的?2)重癥、難治性肺臟疾病的基礎病理環節及治療關鍵點在哪里?基于此,我們確立了明確的研究方向并進行了持續的探索:
1. 探究肺再生的機制。肺泡上皮細胞包括肺泡干細胞和主管氣體交換的肺泡上皮一型細胞。我們通過建立的肺再生小鼠模型,結合小鼠遺傳學、小鼠活體動態成像系統、肺泡干細胞體外三維培養技術和單細胞測序等技術來研究在肺損傷修復過程中肺泡干細胞增殖分化的機制。同時我們對國際上較少有人涉足的肺泡一型細胞進行了深入研究,初步揭示了其在再生過程中的功能及分子機制,并進一步探索其在介導肺泡免疫反應中的作用。
2. 探索肺部常見疾病如:肺癌、特發性肺纖維化、慢性阻塞性肺病等的發病機制和生物靶點,并進行針對性藥物研發。我們實驗室通過建立的各種肺疾病小鼠模型,結合大量正常人和病人肺組織樣本,通過測序、細胞、分子、生化技術等,找到相關的突變、發病機制和治療靶點。目前我們正在研發針對分子靶點的藥物,期望通過恢復和促進肺泡再生功能,以及加速肺功能的修復來達到治療多種肺疾病的目的。
Publications
1. Wang YX, Bin EN, Yuan J, Huang M, Chen JY, Tang N*. (2023) Aberrant differentiation of epithelial progenitors is accompanied by a hypoxic microenvironment in the paraquat-injured human lung. Cell Discov. Accepted
2. Wang Z, Wei DD, Bin EN, Li J, Jiang KW, Lv TT, Mao XX, Wang FC, Dai HP, Tang N*. (2023) Enhanced glycolysis-mediated energy production in alveolar stem cells is required for alveolar regeneration. Cell Stem Cell. 30(8):1028-1042.e7.
3. Fu SL, Wang YX, Bin EN, Huang HW, Wang FC, Tang N*. (2023) c-JUN-mediated transcriptional responses in lymphatic endothelial cells are required for lung fluid clearance at birth. Proc Natl Acad Sci U S A. 120(2): e2215449120.
4. Li J, Tang N*. (2023) Empowering human lung development. Cell Stem Cell. 30(1): 5-6.
5. Shen HY, Huang X, Zhao YH, Wu DM, Xue KL, Yao JF, Wang YS, Tang N, Qiu YF (2022) The Hippo pathway links adipocyte plasticity to adipose tissue fibrosis. Nat Commun. 13(1): 6030.
6. Wang YX, Tang N*. (2021) The diversity of adult lung epithelial stem cells and their niche in homeostasis and regeneration. Sci China Life Sci. 64(12):2045-2059.
7. Li J, Tang N*. (2021) Alveolar stem cell in lung development and regrowth. ERS Monograph on Lung Stem Cells in Development, Health and Disease. 91:17-30.
8. Wu HJ, Tang N*. (2021) Stem cells in pulmonary alveolar regeneration. Development. 148(2): Dev193458.
9. Li H, Liu L, Zhang DY, Xu JY, Dai HP, Tang N, Su X, Cao B. (2020) SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 395(10235): 1517-1520.
10. Chen JY, Wu HJ, Yu YY, Tang N*. (2020) Pulmonary alveolar regeneration in adult COVID-19 patients. Cell Res. 30:708-710.
11. Wu HJ, Yu YY, Huang HW, Hu YC, Fu SL, Wang Z, Shi MT, Zhao X, Yuan J, Li J, Yang XY, Bin EN, Wei D, Zhang HB, Zhang J, Yang C, Cai T, Dai HP, Chen JY, Tang N*. (2020) Progressive pulmonary fibrosis is caused by sustained elevated mechanical tension on alveolar stem cells. Cell. 180(1):107-121. e17.
12. Chu QQ, Yao CF, Qi XB, Stripp BR, Tang N*. (2019) STK11 is required for the normal program of ciliated cell differentiation in airways. Cell Discov. 5:36.
13. Van Soldt BJ, Qian J, Li J, Tang N, Lu J, Cardoso WV. (2019) Yap and its subcellular localization have distinct compartment-specific roles in the developing lung. Development. 146(9).
14. Li J, Tang N*. (2018) May the force be with you. Dev Cell. 47(6):673-674.
15. Jiang K, Tang Z, Li J, Wang F, Tang N*. (2018) Anxa4 mediated airway progenitor cell migration promotes distal epithelial cell fate specification. Sci Rep. 8(1):14344.
16. Liu L, Lu J, Li X, Wu A, Wu Q, Zhao M, Tang N, Song H. (2018) The LIS1/NDE1 complex is essential for FGF signaling by regulating FGF receptor intracellular trafficking. Cell Rep. 22(12):3277-3291.
17. Lin R, Feng Q, Li P, Zhou P, Wang R, Liu Z, Wang Z, Qi XB, Tang N, Shao F, Luo MM. (2018) A hybridization-chain-reaction-based method for amplifying immunosignals. Nat Methods. 15(4):275-278.
18. Wang Y, Tang Z, Huang H, Li J, Wang Z, Yu Y, Zhang C, Li J, Dai H, Wang F, Cai T, Tang N*. (2018) Pulmonary alveolar type I cell population consists of two distinct subtypes that differ in cell fate. Proc Natl Acad Sci USA. 115(10):2407-2412.
19. Li J, Wang Z, Chu QQ, Jiang KW, Li J, Tang N*. (2018) The strength of mechanical forces determines the differentiation of alveolar epithelial cells. Dev Cell. 44(3):297-312.
20. Tang Z, Hu YC, Wang Z, Jiang KW, Zhan C, Marshall WF, Tang N*. (2018) Mechanical forces program the orientation of cell division during airway tube morphogenesis. Dev Cell. 44(3):313-325.
21. Wang Z, Tang N*. (2017) The LUNGe to model alveolar lung diseases in a dish. Cell Stem Cell. 21(4): 413-414.
22. Liu Z, Fu SL, Tang N*. (2017) A standardized method for measuring internal lung surface area via mouse pneumonectomy and prosthesis implantation. J Vis Exp. (125):56114.
23. Liu Z, Wu HJ, Jiang KW, Wang YJ, Zhang WJ, Chu QQ, Li J, Huang HW, Cai T, Ji HB, Yang C, Tang N*. (2016) MAPK-mediated YAP activation controls mechanical-tension-induced pulmonary alveolar regeneration. Cell Rep. 16(7):1810-9.
24. Tang N, and Marshall WF. (2013) Computational analysis of the spatial distribution of mitotic spindle angles in mouse developing airway. Proc. SPIE. 8593.
25. Tang N, and Marshall WF. (2012) Centrosome positioning in vertebrate development. J Cell Sci. 125:4951-4961.
26. Tang N, Marshall WF, McMahon M, Metzger RJ, Martin GR. (2011) Control of mitotic spindle angle by the RAS-regulated ERK1/2 Pathway determines lung tube shape. Science. 333:342-5.
27. Zheng B, Tang T, Tang N, Kudlicka K, Ohtsubo K, Ma P, Marth JD, Farquhar MG, Lehtonen E. (2006) Essential role of RGF-PX1/sorting nexin 13 in mouse development and regulation of endocytosis dynamics. Proc Natl Acad Sci USA. 103(45):16776-81.
28. Tang N, Mack F, Haase VH, Simon MC and Johnson RS. (2006) pVHL function is essential for endothelial extracellular matrix deposition. Mol Cell Biol. 26(7):2519-30.
29. Mendoza MC, Du F, Iranfar N, Tang N, Ma H, Loomis WF, Firtel RA. (2005) Loss of SMEK, a novel, conserved protein, suppresses mek1 null cell polarity, chemotaxis and gene expression defects. Mol Cell Biol. 25(17):7839-53.
30. Tang N, Wang LC, Esko J, Giodano F, Huang Y, Gerber HP, Ferrara N and Johnson RS. (2004) Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell. 6(5):485-95.